技术文章
您现在所在位置:首页 > 技术中心 > 一文看懂光谱分析仪的工作原理及应用范围

一文看懂光谱分析仪的工作原理及应用范围

 更新时间:2020-08-24 点击量:3745
  根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析。其优点是灵敏,迅速。历*曾通过光谱分析发现了许多新元素,如铷,铯,氦等。根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。
 
  发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。
 
  吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律:A=-lgI/Io=-lgT=KCL
 
  式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
 
  物理原理为:
 
  任何元素的原子都是由原子核和绕核运动的电子组成的,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。
 
  能量低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能低的激发态则称为第1激发态。正常情况下,原子处于基态,核外电子在各自能量低的轨道上运动。
 
  如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态。原来提供能量的光经分光后谱线中缺少了一些特征光谱线,因而产生原子吸收光谱。
 
  电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。
 
  光谱分析仪
 
  根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。经典光谱仪器是建立在空间色散原理上的仪器:新型光谱仪器是建立在调制原理上的仪器。经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪。
 
  光学多道OMA(OpTIcalMulTI-channelAnalyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理,存储诸功能于一体。由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率:使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。
 
  光谱分析仪工作原理
 
  原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。
 
  当原子从较高能级跃迁到基态或其它较低的能级的过程中,将释放出多余的能量,这种能量是以一定波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:(1)E2、E1分别为高能级、低能级的能量,h为普朗克(Planck)常数;v及λ分别为所发射电磁波的频率及波长,c为光在真空中的速度。
 
  每一条所发射的谱线的波长,取决于跃迁前后两个能级之差。由于原子的能级很多,原子在被激发后,其外层电子可有不同的跃迁,但这些跃迁应遵循一定的规则(即“光谱选律”),因此对特定元素的原子可产生一系列不同波长的特征光谱线,这些谱线按一定的顺序排列,并保持一定的强度比例。光谱分析就是从识别这些元素的特征光谱来鉴别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。这就是发射光谱分析的基本依据。
 
  光谱分析仪有什么用途
 
  光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。
 
  构成
 
  一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:
 
  1.入射狭缝:在入射光的照射下形成光谱仪成像系统的物点。
 
  2.准直元件:使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。
 
  3.色散元件:通常采用光栅,使光信号在空间上按波长分散成为多条光束。
 
  4.聚焦元件:聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。
 
  5.探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。
 
  主要应用范围
 
  光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、喇曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。
 
  CIOE精密光学展&镜头及摄像模组展是亚洲规模与影响力的光学专业展览,覆盖光学全行业生态链板块,目前获得逾850多家光学企业支持。其中光学成像测量/光学仪器展区展品范围涵盖光学显微镜、激光干涉仪、光谱仪、机器视觉系统、自动光学检测(AOI)系统、非接触式位移测量系统、三座标测量仪、投影仪、光学平台及位移台、表面视觉检测系统、望远镜、天文观测仪器、观鸟镜及支架等光学应用产品等,是集商贸采购、技术交流及行业趋势发布为一体的专业平台。

巴斯德仪器(苏州)有限公司(www.baobs.cn)主营:奥林巴斯光谱仪,奥林巴斯手持光谱仪,伊诺斯便携式光谱仪,奥林巴斯荧光光谱仪

传真:0512-65634826

邮箱:sales@bestyiqi.com

地址:苏州高新区大同路5号5 幢 701 室

版权所有 © 2024 巴斯德仪器(苏州)有限公司   备案号:苏ICP备16017743号-2  管理登陆  技术支持:化工仪器网  GoogleSitemap

在线客服 联系方式 二维码

服务热线

18896733756

扫一扫,关注我们